計劃是提高工作與學習效率的一個前提。做好一個完整的工作計劃,才能使工作與學習更加有效的快速的完成。優秀的計劃都具備一些什么特點呢?又該怎么寫呢?以下我給大家整理了一些優質的計劃書范文,希望對大家能夠有所幫助。
高二數學教學計劃篇一
具體目標如下。
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。
6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教學措施:
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維能力就解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環節,針對不同的教材內容選擇不同教法。
6、重視數學應用意識及應用能力的培養。
高二數學教學計劃篇二
一、學情分析:
學生學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養其自覺性。學生存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,所學知識浮于表面,不愿意深究。因此在以后的教學中,重點在于培養學生的計算能力,同時要進一步提高其思維能力。同時,由于高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
二、教法分析:
1、在“三五五”教學模式下,改善師生之間的關系,提高親和力,以生動活潑的呈現方式,激發興趣和美感,引發學習激情。
2、選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生“看個究竟”的沖動,以達到培養其興趣的目的。
3、通過“觀察”,“思考”,“探究”等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。
4、在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養成其邏輯思維的習慣。
三、具體教學要求:
1、了解合情推理的含義,能利用歸納和類比等進行簡單的推理,了解合情推理在數學發現中的作用;了解演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理;了解合情推理和演繹推理之間的聯系和差異。
2、了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點;了解間接證明的一種基本方法——反證法;了解反證法的思考過程、特點。
3、(理)了解數學歸納法的原理,能用數學歸納法證明一些簡單的數學命題。
4、理解復數相等的充要條件;了解復數的代數表示法及其幾何意義;會進行復數代數形式的四則運算;了解復數代數形式的加、減運算的幾何意義。
5、(理)理解分類加法計數原理和分類乘法計數原理;會用分類加法計數原理或分步乘法計數原理分析和解決一些簡單的實際問題;理解排列、組合的概念;能利用計數原理推導排列數公式、組合數公式,能解決簡單的實際問題;能用計數原理證明二項式定理,會用二項式定理解決與二項展開式有關的簡單問題。
6、(理)理解取有限個值的離散型隨機變量及其分布列的概念,了解分布列對于刻畫隨機現象的重要性;理解超幾何分布及其導出過程,并能進行簡單的應用;了解條件概率和兩個事件相互獨立的概念,理解n次獨立重復試驗的模型及二項分布,并能解決一些簡單的實際問題;理解取有限個值的離散型隨機變量均值、方差的概念,能計算簡單離散型隨機變量的均值、方差,并能解決一些實際問題;利用實際問題的直方圖,了解正態分布曲線的特點及曲線所表示的意義。
7、了解下列一些常見的統計方法,并能應用這些方法解決一些實際問題:了解獨立性檢驗(只要求2×2列聯表)的基本思想、方法及其簡單應用;了解假設檢驗的基本思想、方法及其簡單應用;了解聚類分析的基本思想、方法及其簡單應用;了解回歸的基本思想、方法及其簡單應用。
8、了解程序框圖;了解工序流程圖(即統籌圖);能繪制簡單實際問題的流程圖,了解流程圖在解決實際問題中的作用;了解結構圖;會運用結構圖梳理已學過的知識、整理收集到的資料信息。
四、教學措施:
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維能力就解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環節,針對不同的教材內容選擇不同教法。
6、重視數學應用意識及應用能力的培養。
高二數學學習方法:
做題之后加強反思,做到知識成片,問題成串。日久天長,構建起一個內容與方法的科學的網絡系統。俗話說:“有錢難買回頭看”。一般說做的題太少,很多熟能生巧的問題就會無從談起。因此,應該適當地多做題。但是,只顧鉆入題海,堆積題目,在考試中一般也是難有作為的。所以要把自己學到的知識合理地系統地組織起來,要總結反思,這樣高中數學水平才能長進。
積累高中數學資料隨時整理,要注意積累復習資料。把課堂筆記,練習,區單元測驗,各種試卷,都分門別類按時間順序整理好。每讀一次,就在上面標記出自己下次閱讀時的重點內容。這樣,數學復習資料才能越讀越精,一目了然。
配合老師主動學習,高一新生的學習主動性太差是一個普遍存在的問題。小學生,常常是完成了作業就可以盡情地歡樂。初中生基本上也是如此,聽話的孩子就能學習好。高中則不然,作業雖多,但是只知做作業是絕對不夠;老師的話也不少,但是誰該干些什么了,老師并不一一具體指明。因此,高中新生必須提高自己學習數學的主動性。準備向將來的大學生的學習方法過渡。
合理規劃步步為營,高中的學習是非常緊張的。每個學生都要投入自己的幾乎全部的精力。要想能迅速進步,就要給自己制定一個較長遠的切實可行的數學學習目標和計劃,例如第一學期的期末,自己計劃達到班級的平均分數,第一學年,達到年級的前三分之一,如此等等。此外,還要給自己制定學習計劃,詳細地安排好自己的零星時間,并及時作出合理的微量調整。
高二數學教學計劃篇三
教學目標:
1. 知識與技能目標:
(1)了解中國古代數學中求兩個正整數最大公約數的算法以及割圓術的算法;
(2)通過對“更相減損之術”及“割圓術”的學習,更好的理解將要解決的問題“算法化”
的思維方法,并注意理解推導“割圓術”的操作步驟。
2. 過程與方法目標:
(1)改變解決問題的思路,要將抽象的數學思維轉變為具體的步驟化的思維方法,提高邏
輯思維能力;
(2)學會借助實例分析,探究數學問題。
3. 情感與價值目標:
(1)通過學生的主動參與,師生,生生的合作交流,提高學生興趣,激發其求知欲,培養探索精神;
(2)體會中國古代數學對世界數學發展的貢獻,增強愛國主義情懷。
教學重點與難點:
重點:了解“更相減損之術”及“割圓術”的算法。
難點:體會算法案例中蘊含的算法思想,利用它解決具體問題。
教學方法:
通過典型實例,使學生經歷算法設計的全過程,在解決具體問題的過程中學習一些基本邏輯
結構,學會有條理地思考問題、表達算法,并能將解決問題的過程整理成程序框圖。
教學過程:
教學
環節 教學內容 師生互動 設計意圖
創設 情境
引入新課 引導學生回顧
人們在長期的生活,生產和勞動過程中,創造了整數,分數,小數,正負數及其計算,以及無限逼近任一實數的方法,在代數學,幾何學方面,我國在宋,元之前也都處于世界的前列。我們在小學,中學學到的算術,代數,從記數到多元一次聯立方程的求根方法,都是我國古代數學家最先創造的。更為重要的是我國古代數學的發展有著自己鮮明的特色,也就是“寓理于算”,即把解決的問題“算法化”。本章的內容是算法,特別是在中國古代也有著很多算法案例,我們來看一下并且進一步體會“算法”的概念。
教師引導,學生回顧。
教師啟發學生回憶小學初中時所學算術代數知識,共同創設情景,引入新課。
通過對以往所學數學知識的回顧,使學生理清知識脈絡,并且向學生指明,我國古代數學的發展“寓理于算”,不同于西方數學,在今天看仍然有很大的優越性,體會中國古代數學對世界數學發展的貢獻,增強愛國主義情懷。
閱讀課本 探究新知
1. 求兩個正整數最大公約數的算法
學生通常會用輾轉相除法求兩個正整數的最大公約數:
例1:求78和36的最大公約數
(1) 利用輾轉相除法
步驟:
計算出78 36的余數6,再將前面的除數36作為新的被除數,36 6=6,余數為0,則此時的除數即為78和36的最大公約數。
理論依據: ,得 與 有相同的公約數
(2) 更相減損之術
指導閱讀課本p ----p ,總結步驟
步驟:
以兩數中較大的數減去較小的數,即78-36=42;以差數42和較小的數36構成新的一對數,對這一對數再用大數減去小數,即42-36=6,再以差數6和較小的數36構成新的一對數,對這一對數再用大數減去小數,即36-6=30,繼續這一過程,直到產生一對相等的數,這個數就是最大公約數
即,理論依據:由 ,得 與 有相同的公約數
算法: 輸入兩個正數 ;
如果 ,則執行 ,否則轉到 ;
將 的值賦予 ;
若 ,則把 賦予 ,把 賦予 ,否則把 賦予 ,重新執行 ;
輸出最大公約數
程序:
a=input(“a=”)
b=input(“b=”)
while a<>b
if a>=b
a=a-b;
else
b=b-a
end
end
print(%io(2),a,b)
學生閱讀課本內容,分析研究,獨立的解決問題。
教師巡視,加強對學生的個別指導。
由學生回答求最大公約數的兩種方法,簡要說明其步驟,并能說出其理論依據。
由學生寫出更相減損法和輾轉相除法的算法,并編出簡單程序。
教師將兩種算法同時顯示在屏幕上,以方便學生對比。
教師將程序顯示于屏幕上,使學生加以了解。數學教學要有學生根據自己的經驗,用自己的思維方式把要學的知識重新創造出來。這種再創造積累和發展到一定程度,就有可能發生質的飛躍。在教學中應創造自主探索與合作交流的學習環境,讓學生有充分的時間和空間去觀察,分析,動手實踐,從而主動發現和創造所學的數學知識。
求兩個正整數的最大公約數是本節課的一個重點,用學生非常熟悉的問題為載體來講解算法的有關知識,,強調了提供典型實例,使學生經歷算法設計的全過程,在解決具體問題的過程中學習一些基本邏輯結構,學會有條理地思考問題、表達算法,并能將解決問題的過程整理成程序框圖。為了能在計算機上實現,還適當展示了將自然語言或程序框圖翻譯成計算機語言的內容。總的來說,不追求形式上的嚴謹,通過案例引導學生理解相應內容所反映的數學思想與數學方法。
高二數學教學計劃篇四
一、教學目標
(一)知識與技能
1.通過探究學習使學生掌握幾何概型的基本特征,明確幾何概型與古典概型的區別.
2.理解并掌握幾何概型的概念.
3.掌握幾何概型的概率公式,會進行簡單的幾何概率計算.
(二)過程與方法
1.讓學生通過對隨機試驗的觀察分析,提煉它們共同的本質的東西,從而親歷幾何概型的建構過程,培養學生觀察、類比、聯想等邏輯推理能力.
2.通過實際應用,培養學生把實際問題抽象成數學問題的能力,感知用圖形解決概率問題的方法.
(三)情感、態度、價值觀
1.讓學生了解幾何概型的意義,加強與現實生活的聯系,以科學的態度評價一些隨機現象.
2.通過對幾何概型的教學,幫助學生樹立科學的世界觀和辯證的思想,養成合作交流的習慣,初步形成建立數學模型的能力.
二、教學重點與難點
教學重點:了解幾何概型的`基本特點及進行簡單的幾何概率計算.
教學難點:如何在實際背景中找出幾何區域及如何確定該區域的“測度”.
三、教學方法與教學手段
教學方法:“自主、合作、探究”教學法
教學手段:?電子白板、實物投影、多媒體課件輔助
四、教學過程
課后作業
上一篇:一年級下冊數學工作計劃 一年級下冊數學工作計劃人教版
下一篇:返回列表